田永超 教授

发布者:网页制作发布时间:2020-07-01浏览次数:892



姓名:永超
Web://www.sakurasumi.com/2020/0701/c888a108277/page.htm
职称:教授
学历:博士
方向:作物精确管理
联系方式:E-mail:yctian@njau.edu.cn; Tel:025-84399050


田永超,教授,博士生导师。兼任国家信息农业工程技术中心常务副主任、江苏省信息农业重点实验室常务副主任、农业部农作物系系统分析与决策重点实验室常务副主任,先后入选江苏省高校“青蓝工程”中青年学术带头人、江苏省六大人才高峰等人才计划。重点围绕作物生长监测与诊断交叉性研究方向开展了系统深入的科学研究。

近年来,在国家及部省科研项目的支持下,重点围绕作物生长监测与诊断交叉性研究方向开展了系统深入的科学研究,提出了可指示稻麦主要生长指标的特征光谱波段及敏感光谱参数。基于光谱分析方法,系统研究了不同栽培条件下水稻、小麦冠层与叶片的反射光谱变化规律,明确了稻麦叶面积指数、氮含量、氮积累量和叶绿素密度等主要生长指标的反射光谱响应特征。构建了基于反射光谱的稻麦生长指标无损监测与诊断技术。基于定量建模方法,综合利用地空遥感信息,确立了敏感光谱波段及光谱参数与稻麦主要生长指标间的量化关系,构建了叶片、冠层和区域不同尺度稻麦生长指标的定量估测模型,形成了基于实时苗情信息与适宜指标动态耦合的稻麦生长诊断与调控技术。

自2011年以来发表SCI/EI收录50篇;合作出版专著1部;参编教材1部;授权国家发明专利18项、实用新型专利4项;登记国家计算机软件著作权10多项;获国家科技进步二等奖1项,部省科技进步一等奖2项,江苏省农业技术推广一等奖1项。作为主要负责人参与建设了“国家信息农业工程技术中心”、“江苏省信息农业高技术研究重点实验室”、“农业部农作物系统分析与决策重点实验室”和“农业信息学”江苏省优势学科及“作物栽培学与耕作学”国家重点学科,提升了学科的科学研究、人才培养及社会服务能力。

部分论著:

 Lu J, Li W, Yu M, Zhang X, Ma Y, Su X, Yao X, Cheng T, Zhu Y, Cao W, Tian Y*. (2021). Estimation of rice plant potassium accumulation based on non-negative matrix factorization using hyperspectral reflectance. Precision Agriculture, 22(1): 51-74.

Zhang K1, Liu X1, Ma Y, Wang Y, Zhu Y, Cao W, Tian Y*. (2021). A new canopy chlorophyll index-based paddy rice critical nitrogen dilution curve in eastern China. Field Crops Research, 266: 108139.

Lu J, Eitel J, Engels M, Zhu J, Ma Y, Liao F, Zheng H, Wang X, Yao X, Cheng T, Zhu Y, Cao W, Tian Y*. (2021). Improving Unmanned Aerial Vehicle (UAV) remote sensing of rice plant potassium accumulation by fusing spectral and textural information. International Journal of Applied Earth Observation and Geoinformation,104:102592.

Lu J, Li W, Yu M, Zhang X, Ma Y, Su X, Yao X, Cheng T, Zhu Y, Cao W, Tian Y*. (2021). Estimation of rice plant potassium accumulation based on non-negative matrix factorization using hyperspectral reflectance. Precision Agriculture,22(9).

Zhang K, Liu X, Ma Y, Zhang R, Cao Q, Zhu Y, Cao W, Tian Y*. (2021). A comparative assessment of measures of leaf nitrogen in rice using two leaf-clip meters. Sensors, 20(1): 175.

Yang T, Lu J, Liao F, Qi H, Yao X, Cheng T, Zhu Y, Cao W, Tian Y*. (2021). Retrieving potassium levels in wheat blades using normalised spectra. International Journal of Applied Earth Observation and Geoinformation. 102:102412.

Lu J, Eitel J, Jennewein J, Zhu J, Zheng H, Yao X, Cheng T, Zhu Y, Cao W, Tian Y*. (2021). Combining remote sensing and meteorological data for improved rice plant potassium content estimation. Remote Sensing.  13(17): 3502.

Zhang N, Su X, Zhang X, Yao X, Cheng T, Zhu Y, Cao W*, Tian Y*. (2020). Monitoring daily variation of leaf layer photosynthesis in rice using UAV based multi-spectral imagery and a light response curve model. Agricultural and Forest Meteorology,  291: 1-12.

He J, Zhang X, Guo W, Pan Y, Yao X, Cheng T, Zhu Y, Cao W, Tian Y*. (2020).  Estimation of vertical leaf nitrogen distribution within a rice canopy based on hyperspectral data. Frontiers in Plant Science, 10: 1802.

Zhang K, Liu X, Ma Y, Zhang R, Cao Q, Zhu Y, Cao W, Tian Y*. (2020). A comparative assessment of measures of leaf nitrogen in rice using two leaf‐clip meters. Sensors, 20 (1): 175.

Lu J, Yang T, Su X, Qi H, Yao X, Cheng T, Zhu Y, Cao W, Tian Y*. (2020). Monitoring leaf potassium content using hyperspectral vegetation indices in rice leaves. Precision Agriculture, 21(2): 324-348.

Zheng H, Zhu X, He J, Yao X,Cheng T, Zhu Y, Cao W, Tian Y*(2020). Early season detection of rice plants using RGB, NIR-G-B and multispectral images from unmanned aerial vehicle (UAV). Computers and Electronics in Agriculture, 169: 105223.

Xu X, Lu J, Zhang N, Yang T, He J, Yao X, Cheng T, Zhu Y, Cao W, Tian Y*(2019). Inversion of rice canopy chlorophyll content and leaf area index based on coupling of radiative transfer and Bayesian network models. ISPRS Journal of Photogrammetry and Remote Sensing, 150: 185-196.

Guo C, Tang Y, Lu J, Zhu Y, Cao W, Cheng T, Zhang L,Tian Y*(2019). Predicting wheat productivity: Integrating time series of vegetation indices into crop modeling via sequential assimilation. Agricultural and Forest Meteorology, 272: 69-80.

He J, Zhang N, Su X, Lu J, Yao X, Cheng T, Zhu Y, Cao W,Tian Y*(2019). Estimating leaf area index with a new vegetation index considering the influence of rice panicles. Remote Sensing, 11(15):1809.

Zhang K, Liu X, Ata-Ul-Karim S, Lu J, Krienke B, Li S, Cao Q, Zhu Y, Cao W,Tian Y*(2019). Development of chlorophyll-meter-index-based dynamic models for evaluation of high-yield japonica rice production in Yangtze river reaches. Agronomy-Basel, 9(2):106.

Zhang K, Ge X, Shen P, Li W, Liu X, Cao Q, Zhu Y, Cao W, Tian Y*(2019). Predicting rice grain yield based on dynamic changes in vegetation indexes during early to mid-growth stages. Remote Sensing, 11(4): 387. 

 Zhao L, Xu X, Zhang M, Cheng T, Zhu Y, Cao W,Tian Y*(2018). Development and testing of an ear-leaf model for rice canopy reflectance. Journal of Applied Remote Sensing, 12:016016.

 Guo C, Zhang L, Zhou X, Zhu Y, Cao W, Qiu X, Cheng T,Tian Y*. (2018). Integrating remote sensing information with crop model to monitor wheat growth and yield based on simulation zone partitioning. Precision agriculture, 19:55-78.

Zhou X, Zheng H, Xu X, He J, Ge X, Yao X, Cheng T, Zhu Y, Cao W,Tian Y*. (2017). Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral. ISPRS Journal of Photogrammetry and Remote Sensing, 130:246-255.

Zhang L, GuoC, ZhaoL, ZhuY, CaoW,TianY*,ChengT, WangX. (2016). Estimating wheat yield by integrating the WheatGrow and PROSAIL models. Field Crops Research, 192: 55-66.

Shi P, Zhu Y, Tang L, Chen J, Sun T, Cao W,Tian Y*. (2016). Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice. Environmental and Experimental Botany, 132:28-41.

Guo Y, Zhang L, Qin Y, Zhu Y, Cao W,Tian Y*. (2015). Exploring the Vertical Distribution of Structural Parameters and Light Radiation in Rice Canopies by the Coupling Model and Remote Sensing. Remote Sensing, 7(5):5203-5221.

Tian Y, Gu KJ, Chu X, Yao X, Cao W and Zhu Y*. (2014).  Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice. Plant and Soil, 376(1-2):193-209.

Zhou K, Guo Y, Geng Y, Zhu Y, Cao W,Tian Y*. (2014).  Development of a Novel Bidirectional Canopy Reflectance Model for Row-Planted Rice and Wheat. Remote Sensing, 6(8), 7632-7659.

 Chu X, Guo Y, He J, Yao X, Zhu Y, Cao W,Tian Y*. (2014).  Comparison of Different Hyperspectral Vegetation Indices for Estimating Canopy Leaf Nitrogen Accumulation in Rice. Agronomy Journal, 106:1886-1892.

Tian Y, Zhang J, Yao X, Cao W, Zhu Y*. (2013).  Laboratory assessment of three quantitative methods for estimating the organic matter content of soils in China based on visible/near-infrared reflectance spectra. Geoderma, 202-203:161-170.

Tian Y, Yao X, Yang J, Cao W, Hannaway D and Zhu Y*. (2011). Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance.Field Crops Research, 120:299–310.

Tian YC, Yao X, Yang J, Cao WX, Hannaway DB, Zhu Y. (2011). Extracting red edge position parameters from ground- and space-based hyperspectral data for estimation of canopy leaf nitrogen concentration in rice. Plant Production Science, 14(3): 270- 281.

Ju C, Tian Y, Yao X, Cao W, Zhu Y, Hannaway DB. Estimating leaf chlorophyll content using red edge parameters. (2010). Pedosphere, 20: 633-644.

朱元励,朱艳,黄彦,姚霞,刘蕾蕾,曹卫星,田永超*. 应用粒子群算法的遥感信息与水稻生长模型同化技术. 遥感学报,2010, 14(6): 1233-1249. 

黄彦,朱艳,王航,姚鑫锋,曹卫星,David B. Hannaway,田永超*. 基于遥感与模型耦合的冬小麦生长预测. 生态学报,2011, 31(4): 1073-1084.

黄彦,朱艳,马孟莉,王航,曹卫星,田永超*基于遥感和地统计学方法的小麦生长管理分区. 应用生态学报,2011, 22(2): 376-382.

田永超,杨杰,姚霞,朱艳,曹卫星.估测水稻叶层氮浓度的新型蓝光氮指数.应用生态学报.2010,21(4):966-972.

田永超,杨杰,姚霞,曹卫星,朱艳. 利用叶片高光谱指数预测水稻群体叶层全氮含量. 作物学报,2010, 36(9): 1529-153

授权的国家发明专利:

(1)田永超、曹卫星、朱艳、姚霞、陈青春。一种基于氮素光谱指数法的水稻追氮调控方法。专利号:ZL201110194198.8,授权日:2012/11/14;

(2)朱艳、姚霞、贾雯晴、田永超、刘小军、倪军、曹卫星。一种不同植株氮含量水平下小麦植株含水率的监测方法。专利号:ZL201310422607.4,授权日:2015/11/18;

(3)朱艳、姚霞、韩刚、田永超、刘小军、王薇、倪军、曹卫星。一种基于冠层高光谱指数的小麦植株水分监测方法。专利号:ZL201110368757.2,授权日:2015/9/16;

(4)朱艳、姚鑫锋、姚霞、田永超、倪军、曹卫星。一种根据小麦植株吸氮量核心波长确定适宜带宽的方法。专利号:ZL201210109596.X,授权日:2015/5/27;

(5)朱艳、姚霞、倪军、田永超、汤守鹏、王薇、曹卫星。一种基于光谱技术的小麦叶片糖氮比快速检测方法。专利号:ZL201010543330.7,授权日:2013/5/29;

(6)朱艳、姚霞、王薇、曹卫星、田永超、倪军、刘小军、孙传范。一种基于三波段光谱指数估测植物氮含量的方法。专利号:ZL201110278513.5,授权日:2013/9/18;

(7)朱艳、曹卫星、倪军、卢少林、姚霞、田永超。一种用于作物生长信息监测的信号调理电路。专利号:ZL201310423209.4,授权日:2017/1/11。


主持科研项目:

(1)国家自然科学基金面上项目,基于传输过程的水稻冠层辐射传输平衡及光能利用模拟研究,2014/01-2017/12,85万元,已结题,主持;

(2)国家863计划项目子课题,2013/01-2017/12,面向生产过程的农作物关键参数遥感数据产品,183万元,已结题,主持;

(3)江苏省重点研发项目,2016/07-2019/06,江苏稻麦生产智慧管理技术集成创新与示范,300万元,在研,主持;

(4)江苏省科技支撑,2012/06-2015/05,粮食作物丰产高效的数字化管理技术,500万元,已结题,主持。

主要奖励荣誉:

1.2015年国家科技进步二等奖“稻麦生长指标光谱监测与定量诊断技术”

2.2008年国家科技进步二等奖 “基于模型的作物生长预测与精确管理技术”

3.2007年国家科技进步二等奖 “小麦籽粒品质形成机理及调优栽培技术的研究与应用”

4.2015年江苏省科学技术一等奖“稻麦生长指标无损监测与精确诊断技术”

5.2008年中国高校科技进步一等奖 “作物管理知识模型系统的构建与应用”

6.2017年江苏省农业技术推广一等奖 “稻麦精确管理技术的集成与推广 ”




Baidu
map