Tao Cheng (����), Ph.D.
Professor
Department of Smart
Agriculture, College of Agriculture
Associate Director,
National Engineering and Technology Center for Information Agriculture
Nanjing Agricultural
University
One Weigang, Nanjing 210095,
Jiangsu, China
Phone: (+86) 25 8439
9791 E-mail: tcheng@njau.edu.cn
http://web.netcia.org.cn/TaoCheng.html
(in English)
https://www.researchgate.net/profile/Tao_Cheng2
(in English)
http://web.netcia.org.cn/TaoCheng_cn.html (in Chinese)
EDUCATION
Ph.D. in Earth & Atmospheric Sciences, September 2010
University of Alberta, Edmonton, Alberta,
Canada
M. Eng. in Photogrammetry & Remote Sensing, July 2006
Peking University, Beijing, China
B. Sc. in Geographic Information System, June 2003
Lanzhou
University, Lanzhou, Gansu, China
PROFESSIONAL EXPERIENCE
12/2013
�C present Professor,
Nanjing Agricultural University, Nanjing, China
1/2011 �C 12/2013 Postdoctoral scholar, University of California, Davis, California, USA
9/2006 �C 12/2010 Research/teaching assistant, University of
Alberta,
Edmonton, Alberta, Canada
CAUSES TAUGHT
Remote Sensing for Agricultural Applications: Principles and
Techniques (Excellent English-taught course
accredited by the Ministry of Education and the Provincial Education Department
of Jiangsu)
Information Agriculture Technologies
Introduction to Geospatial Technologies
Professional English in Crop Science
Undergraduate Seminar
RESEARCH INTERESTS
��
Crop type and management
mapping
��
Crop growth monitoring
��
Crop yield and quality
prediction
��
Crop disease detection
��
Crop phenotyping
��
Unmanned aerial vehicle (UAV)
based remote sensing
��
Reflectance/imaging
spectroscopy
��
Remote sensing of foliar
chemistry
��
Precision farming
��
Machine learning
PUBLICATIONS
ResearcherID: http://www.researcherid.com/rid/B-4807-2010
Google Scholar: http://scholar.google.com/citations?user=uOGtKrcAAAAJ
Peer-reviewed papers in English (* denotes corresponding author):
1.
Tian, L., Wang,
Z., Xue, B., Li, D., Zheng, H., Yao, X., Zhu, Y., Cao, W., & Cheng, T.*
(2023). A disease-specific spectral index tracks Magnaporthe oryzae infection in paddy rice from ground to space. Remote
Sensing of Environment, 285, 113384.
2.
Yang, G., Li, X.,
Liu, P., Yao, X., Zhu, Y., Cao, W., & Cheng, T.* (2023). Automated in-season
mapping of winter wheat in China with training data generation and model
transfer. ISPRS Journal of Photogrammetry and Remote Sensing, 202,
422-438. (Download the ChinaWheat10 product at https://doi.org/10.5281/zenodo.8119065.)
3.
Yan, Y., Li, D.,
Kuang, Q., Yao, X., Zhu, Y., Cao, W., & Cheng, T.* (2023).
Integration of canopy water removal and spectral triangle index for improved
estimations of leaf nitrogen and grain protein concentrations in winter wheat. IEEE
Transactions on Geoscience and Remote Sensing, 61, 1-18.
4.
Xue, B., Tian,
L., Wang, Z., Wang, X., Yao, X., Zhu, Y., Cao, W., & Cheng, T.* (2023). Quantification of rice spikelet rot disease
severity at organ scale with proximal imaging spectroscopy. Precision Agriculture, 24,
1049-1071.
5.
Zhou, M., Zheng,
H., He, C., Liu, P., Awan, G.M., Wang, X., Cheng, T., Zhu, Y., Cao, W.,
& Yao, X. (2023). Wheat phenology detection with the methodology of
classification based on the time-series UAV images. Field Crops Research,
292, 108798.
6.
Yin,
Y., Zhu, J., Xu, X., Jia, M., Warner, T.A., Wang, X., Li, T., Cheng, T.,
Zhu, Y., Cao, W., & Yao, X. (2023). Tracing the nitrogen nutrient status of
crop based on solar-induced chlorophyll fluorescence. European Journal of Agronomy, 149, 126924.
7.
Tang,
Y., Zhou, R., He, P., Yu, M., Zheng, H., Yao, X., Cheng, T., Zhu, Y.,
Cao, W., & Tian, Y. (2023). Estimating wheat grain yield by assimilating phenology
and LAI with the WheatGrow model based on theoretical uncertainty of remotely
sensed observation. Agricultural and
Forest Meteorology, 339, 109574.
8.
Su, X.,
Wang, J., Ding, L., Lu, J., Zhang, J., Yao, X., Cheng, T., Zhu, Y., Cao,
W., & Tian, Y. (2023). Grain yield prediction using multi-temporal
UAV-based multispectral vegetation indices and endmember abundance in rice. Field Crops Research, 299, 108992.
9.
Pan,
Y., Wu, W., Zhang, J., Zhao, Y., Zhang, J., Gu, Y., Yao, X., Cheng, T.,
Zhu, Y., Cao, W., & Tian, Y. (2023). Estimating leaf nitrogen and
chlorophyll content in wheat by correcting canopy structure effect through
multi-angular remote sensing. Computers
and Electronics in Agriculture, 208, 107769.
10.
Ma, Z.,
Li, W., Warner, T.A., He, C., Wang, X., Zhang, Y., Guo, C., Cheng, T.,
Zhu, Y., Cao, W., & Yao, X. (2023). A framework combined stacking ensemble
algorithm to classify crop in complex agricultural landscape of high altitude
regions with Gaofen-6 imagery and elevation data. International Journal of Applied Earth Observation and Geoinformation,
122, 103386.
11.
Li, Y.,
Zeng, H., Zhang, M., Wu, B., Zhao, Y., Yao, X., Cheng, T., Qin, X.,
& Wu, F. (2023). A county-level soybean yield prediction framework coupled
with XGBoost and multidimensional feature engineering. International Journal of Applied Earth Observation and Geoinformation,
118, 103269.
12.
Li, W.,
Li, D., Liu, S., Baret, F., Ma, Z., He, C., Warner, T.A., Guo, C., Cheng, T.,
Zhu, Y., Cao, W., & Yao, X. (2023). RSARE: A physically-based vegetation index
for estimating wheat green LAI to mitigate the impact of leaf chlorophyll
content and residue-soil background. ISPRS
Journal of Photogrammetry and Remote Sensing, 200, 138-152.
13.
Li, D., Chen,
J.M., Yu, W., Zheng, H., Yao, X., Cao, W., Wei, D., Xiao, C., Zhu, Y.*, & Cheng,
T.* (2022). Assessing a soil-removed semi-empirical model for estimating
leaf chlorophyll content. Remote Sensing of Environment, 282, 113284.
14.
Li, D., Chen,
J.M., Yan, Y., Zheng, H., Yao, X., Zhu, Y., Cao, W.*, & Cheng, T.*
(2022). Estimating leaf nitrogen content by coupling a nitrogen allocation
model with canopy reflectance. Remote Sensing of Environment, 283,
113314.
15.
Jiang, J., Zhang,
Q., Wang, W., Wu, Y., Zheng, H., Yao, X., Zhu, Y., Cao, W., & Cheng, T.* (2022). MACA: A relative radiometric
correction method for multiflight unmanned aerial vehicle images based on
concurrent satellite imagery. IEEE
Transactions on Geoscience and Remote Sensing, 60, 1-14.
16.
Lu, N., Wu, Y.,
Zheng, H., Yao, X., Zhu, Y., Cao, W., & Cheng, T.* (2022). An assessment of multi-view spectral information
from UAV-based color-infrared images for improved estimation of nitrogen
nutrition status in winter wheat. Precision
Agriculture, 23, 1653-1674.
17.
Wang, W., Zheng,
H., Wu, Y., Yao, X., Zhu, Y., Cao, W., & Cheng, T.* (2022). An assessment of background removal approaches
for improved estimation of rice leaf nitrogen concentration with unmanned
aerial vehicle multispectral imagery at various observation times. Field Crops Research, 283, 108543.
18.
Zheng, H., Ji,
W., Wang, W., Lu, J., Li, D., Guo, C., Yao, X., Tian, Y., Cao, W., Zhu, Y.,
& Cheng, T.* (2022). Transferability of models for predicting rice
grain yield from unmanned aerial vehicle (UAV) multispectral imagery across
years, cultivars and sensors. Drones, 6, 423.
19.
Mustafa,
G., Zheng, H., Khan, I.H., Tian, L., Jia, H., Li, G., Cheng, T., Tian,
Y., Cao, W., Zhu, Y., & Yao, X. (2022). Hyperspectral reflectance proxies
to diagnose in-field fusarium head blight in wheat with machine learning. Remote Sensing, 14, 2784.
20.
Li, X.,
Ata-Ui-Karim, S.T., Li, Y., Yuan, F., Miao, Y., Yoichiro, K., Cheng, T.,
Tang, L., Tian, X., Liu, X., Tian, Y., Zhu, Y., Cao, W., & Cao, Q. (2022).
Advances in the estimations and applications of critical nitrogen dilution
curve and nitrogen nutrition index of major cereal crops. A review. Computers and Electronics in Agriculture,
197, 106998.
21.
Jiang,
J., Liu, H., Zhao, C., He, C., Ma, J., Cheng, T., Zhu, Y., Cao, W.,
& Yao, X. (2022). Evaluation of diverse convolutional neural networks and training
strategies for wheat leaf disease identification with field-acquired
photographs. Remote Sensing, 14, 3446.
22.
He, J.,
Ma, J., Cao, Q., Wang, X., Yao, X., Cheng, T., Zhu, Y., Cao, W., &
Tian, Y. (2022). Development of critical nitrogen dilution curves for different
leaf layers within the rice canopy. European
Journal of Agronomy, 132, 126414.
23.
Tian, L., Xue,
B., Wang, Z., Li, D., Yao, X., Cao, Q., Zhu, Y., Cao, W., & Cheng, T.* (2021). Spectroscopic
detection of rice leaf blast infection from asymptomatic to mild stages with
integrated machine learning and feature selection. Remote Sensing of Environment, 257, 112350.
24.
Yang, G., Yu, W.,
Yao, X., Zheng, H., Cao, Q., Zhu, Y., Cao, W., & Cheng, T.* (2021). AGTOC: A novel approach to winter wheat mapping
by automatic generation of training samples and one-class classification on
Google Earth Engine. International
Journal of Applied Earth Observation and Geoinformation, 102, 102446.
25.
Wang, W., Wu, Y., Zhang, Q., Zheng, H., Yao, X., Zhu, Y., Cao, W., &
Cheng, T. (2021). AAVI: A novel approach to estimating leaf nitrogen
concentration in rice from unmanned aerial vehicle multispectral imagery at
early and middle growth stages. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 14, 6716-6728.
26. Alebele, Y., Wang, W., Yu, W., Zhang, X., Yao, X., Tian,
Y., Zhu, Y., Cao, W., & Cheng, T.*
(2021). Estimation of crop yield from combined optical and sar imagery using
gaussian kernel regression. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 14,
10520-10534.
27. Yan, Y., Zhang, X., Li, D., Zheng, H., Yao, X., Zhu, Y., Cao, W., & Cheng, T*. (2021). Laboratory shortwave infrared reflectance spectroscopy for estimating grain protein content in rice and wheat. International Journal of Remote Sensing, 42, 4467-4492.
28.
Zhang, X., Yang, G., Xu, X., Yao, X., Zheng, H., Zhu, Y., Cao, W., & Cheng, T.* (2021). An assessment of
Planet satellite imagery for county-wide mapping of rice planting areas in
Jiangsu Province, China with one-class classification approaches. International Journal of Remote Sensing,
42, 7610-7635.
29.
Yang,
T., Lu, J., Liao, F., Qi, H., Yao, X., Cheng, T., Zhu, Y., Cao, W.,
& Tian, Y. (2021). Retrieving potassium levels in wheat blades using
normalised spectra. International Journal
of Applied Earth Observation and Geoinformation, 102, 102412.
30.
Lu, J.,
Eitel, J.U.H., Jennewein, J.S., Zhu, J., Zheng, H., Yao, X., Cheng, T.,
Zhu, Y., Cao, W., & Tian, Y. (2021). Combining remote sensing and meteorological
data for improved rice plant potassium content estimation. Remote Sensing, 13, 3502.
31.
Lu, J.,
Eitel, J.U.H., Engels, M., Zhu, J., Ma, Y., Liao, F., Zheng, H., Wang, X., Yao,
X., Cheng, T., Zhu, Y., Cao, W., & Tian, Y. (2021). Improving
Unmanned Aerial Vehicle (UAV) remote sensing of rice plant potassium
accumulation by fusing spectral and textural information. International Journal of Applied Earth Observation and Geoinformation,
104, 102592.
32.
Khan,
I.H., Liu, H., Li, W., Cao, A., Wang, X., Liu, H., Cheng, T., Tian, Y.,
Zhu, Y., Cao, W., & Yao, X. (2021). Early detection of powdery mildew
disease and accurate quantification of its severity using hyperspectral Iimages
in wheat. Remote Sensing, 13, 3612.
33.
Jiang,
J., Zhu, J., Wang, X., Cheng, T., Tian, Y., Zhu, Y., Cao, W., & Yao,
X. (2021). Estimating the leaf nitrogen content with a new feature extracted
from the ultra-high spectral and spatial resolution images in wheat. Remote Sensing, 13, 739.
34.
Jia,
M., Colombo, R., Rossini, M., Celesti, M., Zhu, J., Cogliati, S., Cheng, T.,
Tian, Y., Zhu, Y., Cao, W., & Yao, X. (2021). Estimation of leaf nitrogen
content and photosynthetic nitrogen use efficiency in wheat using sun-induced
chlorophyll fluorescence at the leaf and canopy scales. European Journal of Agronomy, 122, 126192.
35. Lu,
J., Li, W., Yu, M., Zhang, X., Ma, Y., Su, X., Yao, X., Cheng, T., Zhu, Y., Cao, W., & Tian, Y. (2021). Estimation of rice plant potassium accumulation based on
non-negative matrix factorization using hyperspectral reflectance. Precision Agriculture, 22, 51-74.
36. Cheng, T.,
Ji, X., Yang, G., Zheng, H., Ma, J., Yao, X., Zhu, Y., & Cao, W.* (2020).
DESTIN: A new method for delineating the boundaries of crop fields by fusing
spatial and temporal information from WorldView and Planet satellite imagery. Computers and Electronics in Agriculture,
178, 105787.
37. Li,
D., Chen, J.M., Zhang, X., Yan, Y., Zhu, J., Zheng, H., Zhou, K., Yao, X.,
Tian, Y., Zhu, Y., Cheng, T.*, &
Cao, W.* (2020). Improved estimation of leaf chlorophyll content of row crops
from canopy reflectance spectra through minimizing canopy structural effects
and optimizing off-noon observation time. Remote
Sensing of Environment, 248, 111985.
38. Li,
P., Zhang, X., Wang, W., Zheng, H., Yao, X., Tian, Y., Zhu, Y., Cao, W., Chen,
Q., & Cheng, T.* (2020).
Estimating aboveground and organ biomass of plant canopies across the entire
season of rice growth with terrestrial laser scanning. International Journal of Applied Earth Observation and Geoinformation,
91, 102132.
39. Jiang,
J., Zhang, Q., Yao, X., Tian, Y., Zhu, Y., Cao, W., & Cheng, T.* (2020). HISTIF: A new spatiotemporal image fusion method
for high-resolution monitoring of crops at the subfield level. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 13, 4607-4626.
40. Alebele,
Y., Zhang, X., Wang, W., Yang, G., Yao, X., Zheng, H., Zhu, Y., Cao, W., & Cheng, T.* (2020). Estimation of canopy
biomass components in paddy rice from combined optical and SAR data using
multi-target Gaussian regressor stacking. Remote
Sensing, 12, 2564.
41. Fang,
Y., Qiu, X., Guo, T., Wang, Y., Cheng,
T., Zhu, Y., Chen, Q., Cao, W., Yao, X., Niu, Q., Hu, Y., & Gui, L.
(2020). An automatic method for counting wheat tiller number in the field with
terrestrial LiDAR. Plant Methods, 16,
132.
42. He,
J., Zhang, X., Guo, W., Pan, Y., Yao, X., Cheng,
T., Zhu, Y., Cao, W., & Tian, Y. (2020). Estimation of vertical leaf
nitrogen distribution within a rice canopy based on hyperspectral data. Frontiers in Plant Science, 10, 1802.
43. Zheng,
H., Ma, J., Zhou, M., Li, D., Yao, X., Cao, W., Zhu, Y., & Cheng, T. (2020). Enhancing the
nitrogen signals of rice canopies across critical growth stages through the
integration of textural and spectral information from unmanned aerial vehicle
(UAV) multispectral imagery. Remote
Sensing, 12, 957.
44. Zheng,
H., Zhou, X., He, J., Yao, X., Cheng, T.,
Zhu, Y., Cao, W., & Tian, Y. (2020). Early season detection of rice plants
using RGB, NIR-G-B and multispectral images from unmanned aerial vehicle (UAV).
Computers and Electronics in Agriculture,
169, 105223.
45. Zhou,
M., Ma, X., Wang, K., Cheng, T.,
Tian, Y., Wang, J., Zhu, Y., Hu, Y., Niu, Q., Gui, L., Yue, C., & Yao, X.
(2020). Detection of phenology using an improved shape model on time-series
vegetation index in wheat. Computers and
Electronics in Agriculture, 173, 105398.
46.
Lu, N., Wang, W.,
Zhang, Q., Li, D., Yao, X., Tian, Y., Zhu, Y., Cao, W., Baret, F., Liu, S.,
& Cheng, T.* (2019). Estimation
of nitrogen nutrition status in winter wheat from unmanned aerial vehicle based
multi-angular multispectral imagery. Frontiers in Plant Science, 10, 1601.
47.
Li, D., Tian, L.,
Wan, Z., Jia, M., Yao, X., Tian, Y., Zhu, Y., Cao, W.*, & Cheng, T.* (2019). Assessment of unified
models for estimating leaf chlorophyll content across directional-hemispherical
reflectance and bidirectional reflectance spectra. Remote Sensing of Environment, 231,
111240.
48. Lu,
N., Zhou, J., Han, Z., Li, D., Cao, Q., Yao, X., Tian, Y., Zhu, Y., Cao, W.,
& Cheng, T.* (2019). Improved
estimation of aboveground biomass in wheat from RGB imagery and point cloud
data acquired with a low-cost unmanned aerial vehicle system. Plant Methods, 15:17. (WoS Highly Cited Paper)
49. Zheng, H., Cheng,
T., Zhou, M., Li, D., Yao, X., Tian, Y., Cao, W., & Zhu, Y. (2019). Improved
estimation of rice aboveground biomass combining textural and spectral analysis
of UAV imagery. Precision Agriculture,
20, 611-629. (WoS Highly Cited Paper)
50.
Guo, T., Fang,
Y., Cheng, T., Tian, Y., Zhu, Y.,
Chen, Q., Qiu, X., & Yao, X. (2019). Detection of wheat height using
optimized multi-scan mode of LiDAR during the entire growth stages. Computers and Electronics in Agriculture,
165, 104959.
51.
Jiang, J., Zheng,
H., Ji, X., Cheng, T., Tian, Y.,
Zhu, Y., Cao, W., Ehsani, R., & Yao, X. (2019). Analysis and evaluation of
the image preprocessing process of a six-band multispectral camera mounted on
an unmanned aerial vehicle for winter wheat monitoring. Sensors, 19, 747.
52. Jiang,
J., Cai, W., Zheng, H., Cheng, T.,
Tian, Y., Zhu, Y., Ehsani, R., Hu, Y., Niu, Q., Gui, L., & Yao, X. (2019).
Using digital cameras on an unmanned aerial vehicle to derive optimum color
vegetation indices for leaf nitrogen concentration monitoring in winter wheat. Remote Sensing, 11, 2667.
53. Cao,
Z., Yao, X., Liu, H., Liu, B., Cheng, T.,
Tian, Y., Cao, W., & Zhu, Y. (2019). Comparison of the abilities of
vegetation indices and photosynthetic parameters to detect heat stress in
wheat. Agricultural and Forest Meteorology, 265, 121-136.
54.
Jia, M., Li, W.,
Wang, K., Zhou, C., Cheng, T., Tian,
Y., Zhu, Y., Cao, W., & Yao, X. (2019). A newly developed method to extract
the optimal hyperspectral feature for monitoring leaf biomass in wheat. Computers and Electronics in Agriculture,
165, 104942.
55.
Jia, M., Li, D.,
Colombo, R., Wang, Y., Wang, X., Cheng,
T., Zhu, Y., Yao, X., Xu, C., Ouer, G., Li, H., & Zhang, C. (2019).
Quantifying chlorophyll fluorescence parameters from hyperspectral reflectance
at the leaf scale under various nitrogen treatment regimes in winter wheat. Remote Sensing, 11, 2838.
56.
Li, S., Yuan, F.,
Ata-Ui-Karim, S.T., Zheng, H., Cheng, T.,
Liu, X., Tian, Y., Zhu, Y., Cao, W., & Cao, Q. (2019). Combining color
indices and textures of UAV-based digital imagery for rice LAI estimation. Remote Sensing, 11, 1763.
57.
He, J., Zhang,
N., Su, X., Lu, J., Yao, X., Cheng, T.,
Zhu, Y., Cao, W., & Tian, Y. (2019). Estimating leaf area index with a new
vegetation index considering the influence of rice panicles. Remote Sensing, 11, 1809.
58.
Lu, J., Yang, T.,
Su, X., Qi, H., Yao, X., Cheng, T.,
Zhu, Y., Cao, W., & Tian, Y. (2019). Monitoring leaf potassium content
using hyperspectral vegetation indices in rice leaves. Precision Agriculture, 21, 324-348.
59.
Xu, X.Q., Lu,
J.S., Zhang, N., Yang, T.C., He, J.Y., Yao, X., Cheng, T., Zhu, Y., Cao, W.X., & Tian, Y.C. (2019). Inversion
of rice canopy chlorophyll content and leaf area index based on coupling of
radiative transfer and Bayesian network models. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 185-196.
60.
Guo, C., Tang,
Y., Lu, J., Zhu, Y., Cao, W., Cheng, T.,
Zhang, L., & Tian, Y. (2019). Predicting wheat productivity: Integrating
time series of vegetation indices into crop modeling via sequential
assimilation. Agricultural and Forest
Meteorology, 272-273, 69-80.
61.
Li, W., Jiang, J.,
Guo, T., Zhou, M., Tang, Y., Wang, Y., Zhang, Y., Cheng, T., Zhu, Y., Cao, W., & Yao, X. (2019). Generating
red-edge images at 3 m spatial resolution by fusing Sentinel-2 and Planet
satellite products. Remote Sensing,
11, 1422.
62.
Bauer, A., Bostrom, A.G., Ball, J., Applegate, C., Cheng, T.,
Laycock, S., Rojas, S.M., Kirwan, J., & Zhou, J. (2019). Combining computer
vision and deep learning to enable ultra-scale aerial phenotyping and precision
agriculture: A case study of lettuce production. Horticulture Research, 6, 70.
63. Li, D., Cheng,
T.*, Jia, M., Zhou, K., Lu, N., Yao, X., Tian, Y., Zhu, Y., & Cao, W.
(2018). PROCWT: Coupling PROSPECT with continuous wavelet
transform to improve the retrieval of foliar chemistry from leaf bidirectional reflectance
spectra. Remote Sensing of
Environment, 206, 1-14.
64. Li, D., Wang, X., Zheng, H., Zhou, K., Yao, X.,
Tian, Y., Zhu, Y., Cao, W., & Cheng,
T.* (2018). Estimation of area- and mass-based leaf nitrogen contents of
wheat and rice crops from water-removed spectra using continuous wavelet
analysis. Plant Methods, 14, 76.
65.
Xu, X., Ji,
X., Jiang, J., Yao, X., Tian, Y., Zhu, Y., Cao, W., Cao, Q., Yang, H., Shi, Z.,
& Cheng, T.* (2018). Evaluation
of one-class support vector classification for mapping the paddy rice planting
area in Jiangsu province of China from Landsat 8 OLI imagery. Remote Sensing, 10, 546.
66.
Jiang, J.,
Ji, X., Yao, X., Tian, Y., Zhu, Y., Cao, W., & Cheng, T.* (2018). Evaluation of three techniques for correcting
the spatial scaling bias of leaf area index. Remote Sensing, 10, 221.
67.
Zhou, K., Cheng, T., Zhu, Y., Cao, W., Ustin,
S.L., Zheng, H., Yao, X., & Tian, Y. (2018). Assessing the impact of
spatial resolution on the estimation of leaf nitrogen concentration over the
full season of paddy rice using near-surface imaging spectroscopy data. Frontiers in Plant Science, 9:964.
68. Zheng, H., Cheng,
T., Li, D., Yao, X., Tian, Y., Cao, W., & Zhu, Y. (2018). Combining
unmanned aerial vehicle (UAV)-based multispectral imagery and ground-based
hyperspectral data for plant nitrogen concentration estimation in rice. Frontiers in Plant Science, 9, 936.
69. Zheng, H., Cheng,
T., Li, D., Zhou, X., Yao, X., Tian, Y., Cao, W., & Zhu, Y. (2018).
Evaluation of RGB, color-infrared and multispectral images acquired from
unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sensing, 10, 824.
70. Zheng, H., Li, W., Jiang, J., Liu, Y., Cheng, T., Tian, Y., Zhu, Y., Cao, W.,
Zhang, Y., & Yao, X. (2018). A comparative assessment of different modeling
algorithms for estimating leaf nitrogen content in winter wheat using
multispectral images from an unmanned aerial vehicle. Remote Sensing, 10, 2026.
71.
Yao, X.,
Si, H., Cheng, T., Jia, M., Chen,
Q., Tian, Y., Zhu, Y., Cao, W., Chen, C., Cai, J., & Gao, R. (2018).
Hyperspectral estimation of canopy leaf biomass phenotype per ground area using
a continuous wavelet analysis in wheat. Frontiers
in Plant Science, 9, 1360.
72.
Jia, M.,
Zhu, J., Ma, C., Alonso, L., Li, D., Cheng,
T., Tian, Y., Zhu, Y., Yao, X., & Cao, W. (2018). Difference and
potential of the upward and downward sun-induced chlorophyll fluorescence on
detecting leaf nitrogen concentration in wheat. Remote Sensing, 10, 1315.
73.
Li, S.,
Ding, X., Kuang, Q., Ata-UI-Karim, S.T., Cheng,
T., Liu, X., Tian, Y., Zhu, Y., Cao, W., & Cao, Q. (2018). Potential of
UAV-based active sensing for monitoring rice leaf nitrogen status. Frontiers in Plant Science, 9:1834.
74.
Guo, C., Zhang, L., Zhou, X., Zhu, Y.,
Cao, W., Qiu, X., Cheng, T., &
Tian, Y. (2018). Integrating remote sensing information
with crop model to monitor wheat growth and yield based on simulation zone
partitioning. Precision Agriculture, 19, 55-78.
75.
Zhao,
L., Xu, X., Zhang, M., Cheng, T., Zhu, Y., Cao, W., & Tian, Y. (2018).
Development and testing of an ear-leaf model for rice canopy reflectance. Journal of Applied Remote Sensing, 12,
016016.
76.
Li, D., Cheng, T.*, Zhou, K., Zheng, H., Yao,
X., Tian, Y., Zhu, Y., & Cao, W. (2017). WREP: A wavelet-based technique
for extracting the red edge position from reflectance spectra for estimating
leaf and canopy chlorophyll contents of cereal crops. ISPRS Journal of Photogrammetry and Remote Sensing, 129, 103-117.
77.
Cheng, T., Song, R., Li, D., Zhou, K., Zheng, H., Yao,
X., Tian, Y., Cao, W., & Zhu, Y. (2017). Spectroscopic estimation of
biomass in canopy components of paddy rice using dry matter and chlorophyll
indices. Remote Sensing, 9, 319.
78.
Zhou, K.,
Deng, X., Yao, X., Tian, Y., Cao, W., Zhu, Y.*, Ustin, S.L., & Cheng, T.* (2017). Assessing the
spectral properties of sunlit and shaded components in rice canopies with
near-ground imaging spectroscopy data. Sensors, 17,
578.
79.
Cao, Z., Cheng, T., Ma, X., Tian, Y., Zhu, Y.,
Yao, X., Chen, Q., Liu, S., Guo, Z., Zhen, Q., & Li, X. (2017). A new
three-band spectral index for mitigating the saturation in the estimation of
leaf area index in wheat. International
Journal of Remote Sensing, 38, 3865-3885.
80. Yao, X., Wang, N., Liu, Y., Cheng, T., Tian, Y., Chen, Q., & Zhu,
Y. (2017). Estimation of wheat LAI at middle to high levels using unmanned
aerial vehicle narrowband multispectral imagery. Remote Sensing, 9, 1304.
81.
Fang, M.,
Ju, W., Zhan, W., Cheng, T., Qiu,
F., & Wang, J. (2017). A new spectral similarity water index for the
estimation of leaf water content from hyperspectral data of leaves. Remote Sensing of Environment, 196,
13-27.
82.
Zhou, X., Zheng,
H.B., Xu, X.Q., He, J.Y., Ge, X.K., Yao, X., Cheng, T., Zhu, Y., Cao, W.X., & Tian, Y.C. (2017). Predicting
grain yield in rice using multi-temporal vegetation indices from UAV-based
multispectral and digital imagery. ISPRS Journal of Photogrammetry and
Remote Sensing, 130, 246-255. (WoS Highly Cited Paper)
83.
Cheng, T., Yang, Z., Inoue, Y., Zhu, Y., & Cao, W.
(2016). Preface: recent advances in remote sensing for crop growth monitoring. Remote Sensing, 8, 116. (Editorial
for Special Issue ��Recent Advances in
Remote Sensing for Crop Growth Monitoring��)
84.
Zheng, H., Cheng, T., Yao, X., Deng, X., Tian, Y.,
Cao, W., & Zhu, Y. (2016). Detection of rice phenology through time series
analysis of ground-based spectral index data. Field Crops Research, 198, 131-139.
85.
Zhang, L., Guo,
C.L., Zhao, L.Y., Zhu, Y., Cao, W.X., Tian, Y.C., Cheng, T., & Wang, X. (2016). Estimating wheat yield by
integrating the WheatGrow and PROSAIL models. Field Crops Research, 192,
55-66.
86. Yao, X., Huang, Y., Shang, G., Zhou, C., Cheng, T., Tian, Y., Cao, W. & Zhu,
Y. (2015). Evaluation of six algorithms to monitor wheat leaf nitrogen
concentration. Remote Sensing, 7, 14939-14966.
87. Cheng,
T., Riaño, D. &
Ustin, S. L. (2014). Detecting diurnal and seasonal variation in canopy water
content of nut tree orchards from airborne imaging spectroscopy data using
continuous wavelet analysis. Remote Sensing
of Environment, 143, 39-53.
88. Cheng, T., Rivard, B., S��nchez-Azofeifa, G. A., F��ret, J. B., Jacquemoud, S. & Ustin, S. L. (2014). Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 28-38.
89. Li, P., Yu, H., & Cheng, T.
(2014). Lithologic mapping using ASTER imagery and multivariate texture. Canadian Journal of Remote Sensing, 35,
S117-S125.
90. Chu, X., Guo, Y., He, J., Yao, X., Zhu, Y., Cao, W., Cheng, T. & Tian, Y. (2014). Comparison of different
hyperspectral vegetation indices for estimating canopy leaf nitrogen
accumulation in rice. Agronomy Journal,
106, 1911-1920.
91. Yao, X., Ren, H., Cao, Z., Tian,
Y., Cao, W., Zhu, Y. & Cheng,
T. (2014). Detecting leaf nitrogen content in wheat with canopy
hyperspectrum under different soil backgrounds. International Journal of Applied Earth Observation and Geoinformation,
32, 114-124.
92. Cheng, T., Riaño, D., Koltunov, A., Whiting, M. L., Ustin, S. L. & Rodriguez, J. Detection of diurnal variation in orchard canopy water content using MODIS/ASTER airborne simulator (MASTER) data. (2013). Remote Sensing of Environment, 132, 1-12.
93. Cheng,
T., Rivard, B., S��nchez-Azofeifa, G. A., F��ret, J. B., Jacquemoud, S. & Ustin, S. L. (2012). Predicting
leaf gravimetric water content from foliar reflectance across a range of plant
species using continuous wavelet analysis. Journal
of Plant Physiology, 169,
1134-1142.
94. Jin, H., Li, P., Cheng, T. & Song, B. (2012). Land cover
classification using CHRIS/PROBA images and multi-temporal texture. International Journal of Remote
Sensing, 33,101-119.
95. Cheng, T., Rivard, B., & S��nchez-Azofeifa,
G. A. (2011). Spectroscopic determination of leaf water content using
continuous wavelet analysis. Remote
Sensing of Environment, 115, 659-670.
96.
McKellar, R., Wolfe, A.,
Muehlenbachs, K., Tappert, R., Engel, M., Cheng,
T., & S��nchez-Azofeifa, A. (2011). Insect outbreaks produce distinctive carbon
isotope signatures in defensive resins and fossiliferous ambers. Proceedings of the Royal Society B:
Biological Sciences. doi: 10.1098/rspb.2011.0276.
97. Cheng, T., Rivard, B., S��nchez-Azofeifa, G. A., Feng, J. & Calvo-Polanco, M. (2010). Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation. Remote Sensing of Environment, 114, 899-910.
98. Li, P., Cheng, T. & Guo, J. (2009).
Multivariate image texture by multivariate variogram for multispectral image
classification. Photogrammetric Engineering & Remote Sensing,
75, 147-157.
99. Li, P., Yu, H., & Cheng, T. (2009).
Lithologic mapping using ASTER imagery and multivariate texture. Canadian Journal of Remote Sensing,
35, S117-S125.
Books and
Chapters:
1.
Cheng, T., Zhu, Y.,
Li, D., Yao, X, & Zhou, K. (2018). Hyperspectral remote sensing of leaf
nitrogen concentration in cereal crops. In P. S. Thenkabail, J. Lyon, & A.
Huete (Eds.), Hyperspectral Remote
Sensing of Vegetation, Second Edition, Four Volume Set, Volume 2. Boca
Raton, FL: CRC Press.
2.
Cheng, T., Yang, Z., Inoue, Y., Zhu, Y., & Cao, W.
(2016). Recent advances in remote sensing
for crop growth monitoring (eds., p. 408). Basel: MDPI.
Conference presentations
with proceedings:
1.
Tian, L., Wan, Z.,
Li, D., Jiang, J., Yao, X., Tian, Y., Zhu, Y., Cao, W., & Cheng, T*. Detecting rice blast using model inverted biochemical variables from
close-range reflectance imagery of fresh leaves. Proceedings of International
Geoscience and Remote Sensing Symposium (IGARSS), July
22-27, 2018, Valencia, Spain.
2.
Cheng, T., Li, D.,
Zheng, H., Yao, X., Tian, Y., Zhu, Y., & Cao, W. Towards decomposing the effects
of foliar nitrogen content and canopy structure on rice canopy spectral
variability through multi-scale spectral analysis. Proceedings of International
Geoscience and Remote Sensing Symposium (IGARSS), July
10-15, 2016, Beijing, China, pp. 3508-3511. (Oral)
3.
Song, R.,
Cheng, T.*, Yao, X., Tian, Y., Zhu, Y., Cao, W. Evaluation of Landsat 8 time series
image stacks for predicting yield and yield components of winter wheat. Proceedings of International
Geoscience and Remote Sensing Symposium (IGARSS), July
10-15, 2016, Beijing, China, pp. 6300-6303.
4.
Li, D., Cheng,
T.*, Yao, X., Zhang, Z., Tian, Y., Zhu, Y., Cao, W.
Wavelet-based PROSPECT inversion for retrieving leaf mass per area (LMA) and
equivalent water thickness (EWT) from leaf reflectance. Proceedings of International
Geoscience and Remote Sensing Symposium (IGARSS), July
10-15, 2016, Beijing, China, pp. 6910-6913.
5. Cheng, T., Li, D., Yao, X., Tian, Y., Zhu, Y. & Cao, W. A wavelet-based technique for extracting the red edge position from vegetation reflectance spectra. Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS), July 26-31, 2015, Milan, Italy, pp. 2673-2676. (Oral)
6.
Zhou, K., Tian, Y., Cheng,
T., Yao, X., Zhu, Y. & Cao, W. Inversion of the PROSAIL
model for extracting key vegetation biophysical parameter of wheat at canopy
and regional levels. 3rd Agro-Geoinformatics,
August 11-14, 2014, Beijing, China.
7.
Alsina, M. M., Cheng,
T., Riaño, D., Whiting, M., Ustin, S. & Smart, D. Water status
detection in California Table Grapes: from leaf to airborne. 9th European Conference on
Precision Agriculture, July 7th-11th, 2013, Lleida,
Catalonia, Spain.
8.
Ustin, S., Kefauver,
S., Rodriguez, J., Cheng, T. & Riaño, D. Use of optical and
thermal infrared imagery from AVIRIS/MASTER to estimate evapotranspiration. 2011 HyspIRI workshop, August 23-25,
2011, Washington, D.C.
9.
Cheng, T., Riaño, D.,
Koltunov, A., Whiting, M. L. &Ustin, S. L. (2011). Remote detection of
water stress in orchard canopies using MODIS/ASTER airborne simulator (MASTER)
data.Proceedings of SPIE 8156, August
21-25, 2011, San Diego, California. (Oral)
10. Cheng, T., Rivard, B., & S��nchez-Azofeifa, G. A. Spectroscopic determination of leaf water content using continuous wavelet analysis. Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS), July 25-30, 2010, Honolulu, Hawaii. (Poster)
11. Li, P., Cheng, T., Moser, G., Serpico, S.B. &
Ma, D. (2007). Multitemporal change detection by spectral and multivariate
texture information. Proceedings of International Geoscience and
Remote Sensing Symposium (IGARSS), July 23-27, 2007, Barcelona, Spain, pp.
1922-1925.
12. Li, P., Cheng, T., Hu, H., & Xiao, X.
(2006). High-resolution multispectral image classification over urban areas by
image segmentation and extended morphological profile. Proceedings of
International Geoscience and Remote Sensing Symposium (IGARSS), July
31-August 4, 2006, Denver, Colorado, pp. 3252-3254.
13. Li, P. & Cheng, T. (2005). Multitemporal image classification
by multichannel texture and Support Vector Machines (SVM). Proceedings
of the 9th International Symposium on Physical Measurements and Signature in
Remote Sensing (ISPMSRS), October 17-19, 2005, Beijing, China, pp.
235-237.
14.
Cheng, T. & Li, P. (2005).
Multivariate variogram-based multichannel image texture for image
classification. Proceedings of International Geoscience and Remote
Sensing Symposium (IGARSS), July 25-29, 2005, Seoul, Korea, pp. 3830-3832.
(Poster)
Conference
presentations without proceedings:
1.
Cheng, T. Hyperspectral
estimation of leaf chlorophyll and nitrogen contents in cereal crops with
empirical and physical models. 1st
Workshop on spaceborne hyperspectral applications. December 9, 2020.
Nanning, China. (Invited)
2.
Cheng, T. Field-level
agricultural monitoring for precision crop management. Workshop on Time series analysis of remotely sensed imagery for
monitoring natural resources. November 15, 2020. Nanjing, China.
3.
Cheng, T.
Li, D., Zheng, H., Lu, N., Yan, Y., Zhang, X., Yao, X., Tian, Y., Zhu, Y.,
& Cao, W. Crop nitrogen phenotyping from leaves to grains. 6th International Plant Phenotyping
Symposium. October 22-26, 2019. Nanjing, China. (Invited)
4.
Cheng, T. Close-range
imaging spectroscopy and its applications to crop growth monitoring. 2nd Zolix Workshop on Spectral
Imaging. July 31, 2019. Nanjing, China (Invited)
5.
Cheng, T., Li, D., Yao, X., Tian, Y., Zhu, Y., & Cao, W. Continuous
wavelet spectral analysis: a new methodology for the spectroscopic estimation
of foliar chemistry. 4th
Quantitative Remote Sensing Forum, June 14-16, 2019. Nanjing, China.
6.
Cheng,
T. Is it feasible to invert the PROSPECT model with leaf clip measured
reflectance spectra? Lica Workshop on
Spectroscopy. May 28, 2019. Nanjing, China.
7.
Cheng,
T. Spectral sensing of crop growth from leaf to regional levels. 2018 Joint Annual Meeting for Jiangsu
Provincial Society of Remote Sensing & GIS and Jiangsu Provincial Society
of Geography. December 8, 2018. Nanjing, China.
8.
Cheng, T. Multi-scale integrated growth
monitoring for precision crop management: technologies and practices. 4th
Sino-German Agricultural Week Forum on Smart Agriculture and Digital Rural
Development, November 26, 2018.
Beijing, China. (Invited)
9.
Cheng, T. PROCWT: a new
algorithm for retrieving biochemistry from bidirectional reflectance spectra of
leaves. Workshop on Vegetation Remote
Sensing. October 27, 2018. Nanjing, China.
10.
Cheng, T. Continuous wavelet
spectral analysis: a new approach for hyperspectral estimation of crop growth
parameters. Conference on Remote Sensing
of China. August 23, 2018. Deqing, China. (Invited)
11.
Cheng, T. Continuous
wavelet spectral analysis for the quantification of crop chemistry. 1st Youth Agricultural Scientist
Forum. April 22, 2018. Beijing, China. (Invited)
12.
Cheng, T., Li, D.,
Zhou, K., Zheng, H., Lu, N., Jia, M., Xu, X., Jiang, J., Yao, X., Tian, Y.,
Cao, W., & Zhu, Y. Multi-scale phenotyping for crop growth traits for
precision cultivation. 2nd
Asia-Pacific Plant Phenotyping Conference. March 23-25, 2018. Nanjing,
China. (Keynote)
13.
Cheng, T., Baret, F.,
Liu, S., Lu, N., Li, D., Zhou, J., Franck, T., Jezequel, S., de Solan B.,
Comar, A., Yao, X., Tian, Y., Zhu, Y. & Han, D. Leaf chlorophyll content
estimation from multispectral imagery acquired from unmanned aerial vehicle
(UAV) over wheat crops. XIX International
Botanical Congress. July 23-29, 2017, Shenzhen, China. (Oral)
14.
Cheng, T., Zheng, H.,
Lu, N., Zhou, J., Wang, N., Zhou, X., Yao, X., Tian, Y., Cao, W., & Zhu, Y.
Field phenotyping with unmanned aerial vehicle (UAV) based remote sensing for
crop cultivation purposes. 1st
Asia-Pacific Plant Phenotyping Conference. October 19-21, 2016. Beijing,
China. (Oral)
15.
Cheng, T. Understanding
the water signals in leaf reflectance from a wavelet perspective. The 4th Ebernburg-Workshop ��Leaf
Optics��, October 14-16, 2015, Ebernburg, Germany. (Oral)
16.
Cheng, T., Zhou, K.
Deng, X., Yao, X., Tian, Y., Zhu, Y., & Cao, W. Airborne and near-ground
imaging spectroscopy for monitoring crop growth: advantages and challenges from
spectral and spatial details. Joint
International Conference on Intelligent Agriculture, September 27-29, 2015,
Beijing, China. (Oral).
17. Cheng, T., Song, R., Zheng, H., Deng, X., Zhou, X., Yao, X., Tian, Y., Zhu, Y. & Cao, W. Estimation of biomass for different canopy components of rice crops using chlorophyll and dry matter indices. International Conference on Carbon Cycle and Global Change, June 9-12, 2015, LinAn, Hangzhou, China. (Oral)
18. Cheng, T.,
Riaño, D. &
Ustin, S. L. Continuous wavelet analysis applied to imaging spectroscopy data
for mapping canopy water content in agricultural vegetation. 35th International Symposium on
Remote Sensing of Environment, April 22-26, 2013, Beijing, China. (Oral)
19.
Cheng, T., Riaño, D. & Ustin, S.
L. Exploring the relationship between water flux and vegetation water
status using time series data of evapotranspiration and MODIS vegetation
indices. AGU 2012 Fall Meeting, December 3-7, 2012, San Francisco, CA. (Poster)
20.
Cheng, T., Riaño, D. & Ustin, S.
L. Analysis of seasonal and diurnal variation in vegetation canopy water
content using AVIRIS-derived liquid water products from ACORN. 2012 HyspIRI workshop, October 16-18,
2012, Washington, D. C. (Poster)
21. Cheng, T., Rivard, B., S��nchez-Azofeifa, G. A., & Jacquemoud, S. Wavelets: a useful tool to derive vegetation properties from hyperspectral data. FLUXNET Workshop, June 7-9, 2011, Berkeley, California. (Poster)
22.
Cheng, T., Rivard, B., & S��nchez-Azofeifa, G. A. Identification of
boreal tree species in northern Alberta with airborne hyperspectral imagery. GIS Day, November 15, 2007,
University of Alberta, Edmonton, Alberta, Canada. (Poster)
INVITED PRESENTATIONS
l Hyperspectral
estimation of leaf chlorophyll and nitrogen contents in cereal crops with
empirical and physical models. Zhejiang
University. January 7, 2021. Hangzhou, China.
l Hyperspectral
estimation of leaf chlorophyll and nitrogen contents in cereal crops. Zolix Instruments Co., Ltd. November 26,
2020. Online.
l Hyperspectral
monitoring of leaf nitrogen and chlorophyll contents in cereal crops:
explorations from leaf to global scales. Jiangsu
Academy of Agricultural Sciences. October 27, 2020. Nanjing, China.
l Hyperspectral
estimation of crop nitrogen nutrition status related parameters. Peking University Summer School on
Quantitative Remote Sensing. July 6, 2019. Beijing, China.
l Benefits of
the spatial and spectral details from ground-based hyperspectral imaging for
crop monitoring. NAU Crop Phenomics
Workshop. August, 2018, Nanjing, China.
l Multi-scale
remote sensing techniques for crop growth monitoring and acreage estimation. South China Agricultural University. June,
2018, Guangzhou, China.
l Remote
sensing for crop growth monitoring and planting area mapping. Institute of Crop Sciences, CAAS. May,
2018, Beijing, China.
l Continuous
wavelet spectral analysis (CWSA) for the spectroscopic estimation of foliar
chemistry. National Physical Geography
Conference 2017. November, 2017, Nanjing, China.
l Hyperspectral
remote sensing of foliar nitrogen content in cereal crops. Annual meeting of Jiangsu Society of RS & GIS. November, 2017,
Nanjing, China.
l Hyperspectral
monitoring of crop growth: from canopies to organs. The International Conference on Intelligent Agriculture 2017. August,
2017, Changchun, China.
l Assessing
the spectral properties of rice organs with field-based hyperspectral imaging
data. HZAU Plant Phenomics Forum.
May, 2017, Wuhan, China.
l Field
phenotyping of rice and wheat crops with ground and unmanned aerial vehicle
(UAV) based sensing technologies. Phenomatics
Workshop. April, 2017. Shanghai, China.
l Hyperspectral
estimation of vegetation moisture at multiple scales. January 2016, Nanjing
Institute of Geography & Limnology, CAS, Nanjing, China.
l Quantitative
remote sensing for retrieving vegetation parameters. May 2015, Sun Yat-Sen
University, Guangzhou, China.
l Detecting
canopy water dynamics in nut tree orchards using multispectral and
hyperspectral airborne data. June 2014, Nanjing University of Information
Science and Technology, Nanjing, China.
l Quantification
of vegetation properties from remotely sensed data at leaf and canopy scales.
May 2013, Nanjing University, Nanjing, China
l A wavelet
perspective on the quantification of vegetation water content from
hyperspectral data at leaf and canopy scales. April 2013, Peking University,
Beijing, China
l Remotely
sensed fuel moisture using leaf and imaging spectroscopy. ASPRS Northern
California Region Technical Session ��Remote
Sensing of Fire and Ecosystem Impacts��, August 8th, 2012.
McClellan, CA.
l Detection of diurnal variation in orchard canopy water content using MODIS/ASTER airborne simulator (MASTER) data. ��Multiscale assessment of vegetation water content estimates and its impact on soil moisture for agricultural and natural vegetation�� Project meeting, March 21, 2012, University of California, Davis, CA.
l Estimating leaf fuel moisture content
from reflectance spectra using continuous wavelet analysis. ��Near Real Time Science Processing Algorithm
for Live Fuel Moisture Content for the MODIS Direct Readout System�� Project
kick-off meeting, October 25, 2011, University of California, Davis, CA.
l Continuous wavelet analysis for the detection of green attack due to mountain pine beetle infestation. Earth Observation Science Day, March 4, 2010, University of Alberta, Edmonton, Alberta, Canada.
l Continuous wavelet analysis for the detection of green attack due
to mountain pine beetle infestation. ATLAS
Symposium, April 8-9, 2010, University of Alberta, Edmonton, Alberta,
Canada.
AWARDS& HOUNORS
Shennong Youth Talent, Ministry
of Agriculture and Rural Affairs (2022)
2021 RSE Best Reviewer,
Elsevier, (2021)
Youth Science and Technology
Award, Crop Science Society of China (2019)
Youth
Remote Sensing & GIS Science and Technology Award, Jiangsu Provincial
Society of Remote Sensing & GIS (2018)
New Star in Research, College
of Agriculture, Nanjing Agricultural University (2017)
Jiangsu Distinguished
Professor (2014-2017, awarded by the Provincial Education Dept. of Jiangsu)
UC Davis Postdoctoral Scholars
Association (PSA) Travel Grant (2013)
Nominee for the Award for
Excellence in Postdoctoral Research, UC Davis (2012)
Professional Development
Grant, University of Alberta, Canada (2010)
J Gordin Kaplan Graduate
Student Award, University of Alberta, Canada (2010)
Visiting student scholarship,
University of Genoa, Genoa, Italy (2006)
Outstanding graduate, Lanzhou
University, Lanzhou, China (2003)
PROFESSIONAL ACTIVITIES
Senior Member, IEEE (2010-)
Chair, IEEE Geoscience & Remote
Sensing Society Nanjing Chapter (2016-2020)
Guest Editor for the
special issues ��Recent Advances in Remote Sensing for Crop Growth Monitoring��
in Remote Sensing (2014-2015) and
��Optical Remote Sensing of Crop Growth and Health for Smart Farming�� in IEEE-JSTARS (2020-2021)
Associate Editor, IEEE J-STARS (2021/2-)
Associate Editor, CABI Agriculture & Biosciences (2021/6-)
Editorial Board, Precision Agriculture (2021/8-)
Editorial Board, ISPRS International Journal of Geo-Information (2015/6-)
Session Chair, 6th International Plant Phenotyping
Symposium, October 22-26, 2019, Nanjing, China
Session Chair, 2nd
Asia-Pacific Plant Phenotyping Conference. March 23-25, 2018. Nanjing, China.
Session Co-chair, 2018 Joint Annual Meeting for Jiangsu Provincial
Society of Remote Sensing & GIS and Jiangsu Provincial Society of Geography. December 8, 2018. Nanjing, China.
Session Co-chair, International
Conference on Carbon Cycle and Global Change, June 9-12, 2015, LinAn, Hangzhou,
China
Program Co-chair &
conference coordinator, International symposium on crop growth monitoring,
September 13-16, 2014, Nanjing, China
Session Chair, 3rd Agro-Geoinformatics,
August 11-14, 2014, Beijing, China
Reviewer for journals:
Computers and Electronics in
Agriculture
Field Crops Research
European Journal of Agronomy
IEEE Transactions on
Geoscience and Remote Sensing
IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing
International Journal of
Remote Sensing
ISPRS Journal of
Photogrammetry and Remote Sensing
Nature Communications
Precision Agriculture
Remote Sensing of Environment
2019-2022 NSFC
(41871259)
Principles and methods for the
early detection of rice leaf blast using close-range imaging spectroscopy
2016-2020 National
Key Research and Development Program, ¥60,000,000 (Project PI)
Crop
growth monitoring and diagnosis technologies for precision crop cultivation
Work
Package 1, (WP1 PI)
Ground- and
UAV-based growth monitoring and productivity prediction of wheat and rice crops
2015-2016 NSFC
(31470084)
Decomposing the
physiological/biochemical and structural effects on crop spectral properties
using wavelet analysis
2014-2017 Award
for Jiangsu Distinguished Professor
Graduate student advising
PhD: 6
completed, 9 ongoing
Master��s:
16 completed, 8 ongoing